A converse to (Milnor-Kervaire theorem) ×Retc…
نویسندگان
چکیده
منابع مشابه
A Converse to Dye’s Theorem
Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of F2 on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not univ...
متن کاملWeil Converse Theorem
Hecke generalized this equivalence, showing that an integral form has an associated Dirichlet series which can be analytically continued to C and satisfies a functional equation. Conversely, Weil showed that, if a Dirichlet series satisfies certain functional equations, then it must be associated to some integral form. Our goal in this paper is to describe this work. In the first three sections...
متن کاملA Torsion - Free Milnor - Moore Theorem
Let ΩX be the space of Moore loops on a finite, qconnected, n-dimensional CW complex X , and let R ⊂ Q be a subring containing 1/2. Let ρ(R) be the least non-invertible prime in R. For a graded R-module M of finite type, let FM = M/TorsionM . We show that the inclusion P ⊂ FH∗(ΩX ;R) of the sub-Lie algebra of primitive elements induces an isomorphism of Hopf algebras UP ∼ = −→ FH∗(ΩX ;R), provi...
متن کاملA Torsion - Free Milnor - Moore Theorem Jonathan
Let ΩX be the space of Moore loops on a finite, qconnected, n-dimensional CW complex X , and let p be an odd prime. We prove the theorem: If p ≥ n/q, then the Hurewicz homomorphism induces isomorphisms U(Fπ∗(ΩX(p))) = −→ FH∗(ΩX(p)) and UE ∞ π (ΩX) = −→ E∞ H (ΩX) of Hopf algebras, where E ∞ π and E ∞ H are the limit terms of the homotopy and homology Bockstein spectral sequences, respectively, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1979
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1979.82.357